Abstract

AbstractFluorescence sensing is crucial to studying biological processes and diagnosing diseases, especially in the second near‐infrared (NIR‐II) window with reduced background signals. However, it's still a great challenge to construct “off‐on” sensors when the sensing wavelength extends into the NIR‐II region to obtain higher imaging contrast, mainly due to the difficult synthesis of spectral overlapped quencher. Here, we present a new fluorescence quenching strategy, which utilizes steric hindrance quencher (SHQ) to tune the molecular packing state of fluorophores and suppress the emission signal. Density functional theory (DFT) calculations further reveal that large SHQs can competitively pack with fluorophores and prevent their self‐aggregation. Based on this quenching mechanism, a novel activatable “off‐on” sensing method is achieved via bio‐analyte responsive invalidation of SHQ, namely the Steric Hindrance Invalidation geNerated Emission (SHINE) strategy. As a proof of concept, the ClO−‐sensitive SHQ lead to the bright NIR‐II signal release in epileptic mouse hippocampus under the skull and high photon scattering brain tissue, providing the real‐time visualization of ClO− generation process in living epileptic mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.