Abstract

Nickel oxide (NiO) is one of the most popular hydrogenation catalysts. In heterogeneous catalysis, nickel oxide is used, for example, as a suitable methanation catalyst in the Fischer–Tropsch reaction not only for CO hydrogenation but also in the modified Fischer–Tropsch reaction with CO2. However, CH4 selectivity and CO2 conversion strongly depend on NiO micro- (MPs) and nanoparticles’ (NPs) shape, size, and surface area. In this study, the synthesis of NiO micro- and nanoparticles was conducted using the simple solvothermal method. Different morphologies (microspheres, sheet clusters, hexagonal microparticles, and nanodiscs) were prepared using this method with different solvents and stabilizers. The prepared catalysts were tested in the hydrogenation of CO2 in a gas phase with excellent conversion values and high selectivity to produce CH4. The best results were obtained with the NiO with disc or sphere morphology, which produced methane with selectivity at a level near 100% and conversion close to 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.