Abstract

The formation of C-N bonds is a fundamental aspect of organic synthesis, and hydroamination has emerged as a pivotal strategy for the synthesis of essential amine derivatives. In recent years, there has been a surge of interest in metal hydride-catalyzed hydroamination reactions of common alkenes and alkynes. This method avoids the need for stoichiometric organometallic reagents and overcomes problems associated with specific organometallic compounds that may impact functional group compatibility. Notably, recent developments have brought to the forefront olefinic hydroamination and hydroamidation reactions facilitated by nickel hydride (NiH) catalysis. The inclusion of suitable chiral ligands has paved the way for the realization of asymmetric hydroamination reactions in the realm of olefins. This review aims to provide an in-depth exploration of the latest achievements in C-N bond formation through intermolecular hydroamination catalyzed by nickel hydrides. Leveraging this innovative approach, a diverse range of alkene and alkyne substrates can be efficiently transformed into value-added compounds enriched with C-N bonds. The intricacies of C-N bond formation are succinctly elucidated, offering a concise overview of the underlying reaction mechanisms. It is our aspiration that this comprehensive review will stimulate further progress in NiH-catalytic techniques, fine-tune reaction systems, drive innovation in catalyst design, and foster a deeper understanding of the underlying mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.