Abstract

Images routinely suffer from quality degradation in fog, mist, and other harsh weather conditions. Consequently, image dehazing is an essential and inevitable pre-processing step in computer vision tasks. Image quality enhancement for special scenes, especially nighttime image dehazing is extremely well studied for unmanned driving and nighttime surveillance, while the vast majority of dehazing algorithms in the past were only applicable to daytime conditions. After observing a large number of nighttime images, artificial light sources have replaced the position of the sun in daytime images and the impact of light sources on pixels varies with distance. This paper proposed a novel nighttime dehazing method using the light source influence matrix. The luminosity map can well express the photometric difference value of the picture light source. Then, the light source influence matrix is calculated to divide the image into near light source region and non-near light source region. Using the result of two regions, the two initial transmittances obtained by dark channel prior are fused by edge-preserving filtering. For the atmospheric light term, the initial atmospheric light value is corrected by the light source influence matrix. Finally, the final result is obtained by substituting the atmospheric light model. Theoretical analysis and comparative experiments verify the performance of the proposed image dehazing method. In terms of PSNR, SSIM, and UQI, this method improves 9.4%, 11.2%, and 3.3% over the existed night-time defogging method OSPF. In the future, we will explore the work from static picture dehazing to real-time video stream dehazing detection and will be used in detection on potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.