Abstract

Crystallochemical treatment of the Nieuwland reaction is carried out on the basis of structural data obtained for crystalline acetylene complexes of the formulas NH4Cu8Cl9·4C2H2·1/2HCu2Cl3·H2O (I), NH4Cu3Cl4·C2H2 (II), KCu8Cl9·4C2H2·1/2HCu2Cl3·H2O (III), KCu3Cl4·C2H2 (IV), (NH4)2Cu3Cl5·4/9H2O·(xC2H2) with x=0 (Va), 1/9 (Vb), and 4/9 (Vc) and divinylacetylene (DVA) copper chloride compounds 2CuCl·DVA (VI) and 3CuCl·DVA (VII). Because of the π-coordination of a copper atom, the C≡C bond of the acetylene molecule is activated, as indicated by its significant (up to 1.32 A) stretch (complexes I and II). The zeolite-like structure of complexes Va-Vc, which form in a catalytic solution, is realized as an infinite {[Cu108Cl168(H2O)16]60−}n anion with discrete [Cl(NH4)6]5+ cations inside. In this structure, only 16 Cu(1) atoms have a trigonal-pyramidal environment with the oxygen atom of the crystallization water located in the vertex (dCu−O=2.79 A). Under the liquid-phase conditions of the Nieuwland reaction, these copper atoms are active centers stimulating the reaction to the subsequent acetylene oligomerization due to the π-interaction with the C2H2 molecule. The mutual arrangement of the catalytically active Cu(1) atoms in structure Va serves as a matrix for the synthesis of DVA, as shown by the structure of the 2CuCl·DVA adduct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.