Abstract

The ability to examine genetically engineered mice in a chronic intravenous (IV) nicotine self-administration paradigm will be a powerful tool for investigating the contribution of specific genes to nicotine reinforcement and more importantly, to relapse behavior. Here we describe a reliable model of nicotine-taking and -seeking behavior in male C57BL/6J mice without prior operant training or food restriction. Mice were allowed to self-administer either nicotine (0.03mg/kg/infusion) or saline in 2-h daily sessions under fixed ratio 1 (FR1) followed by FR2 schedules of reinforcement. In the nicotine group, a dose–response curve was measured after the nose-poke behavior stabilized. Subsequently, nose-poke behavior was extinguished and ability of cue presentations, priming injections of nicotine, or intermittent footshock to reinstate responding was assessed in both groups. C57BL/6J mice given access to nicotine exhibited high levels of nose-poke behavior and self-administered a high number of infusions as compared to mice given access to saline. After this acquisition phase, changing the unit-dose of nicotine resulted in a flat dose–response curve for nicotine-taking and subsequently reinstatement of nicotine-seeking behavior was achieved by both nicotine-associated light cue presentation and intermittent footshock. Nicotine priming injections only triggered significant reinstatement on the second consecutive day of priming. In contrast, mice previously trained to self-administer saline did not increase their responding under those conditions. These results demonstrate the ability to produce nicotine-taking and nicotine-seeking behavior in naive C57BL/6J mice without both prior operant training and food restriction. Future work will utilize these models to evaluate nicotine-taking and relapsing behavior in genetically-altered mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.