Abstract

Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.