Abstract
High-nuclearity metal clusters have received considerable attention not only because of their diverse architectures and topologies, but also because of their potential applications as functional materials in many fields. To explore new types of clusters and their potential applications, a new nickel(II) cluster-based mixed-cation coordination polymer, namely poly[hexakis[μ4-(2-carboxylatophenyl)sulfanido]di-μ3-chlorido-tri-μ2-hydroxido-octanickel(II)sodium(I)], [Ni8NaCl2(OH)3(C7H4O2S)6]n, 1, was synthesized using nickel chloride hexahydrate and mercaptobenzoic acid (H2mba) as starting reactants under hydrothermal conditions. The material was characterized by single-crystal X-ray diffraction (SCXRD), Fourier transform IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction and X-ray photoelectron spectroscopy analysis. SCXRD shows that 1 consists of a hexanuclear nickel(II) [Ni6] cluster, dinuclear NiII nodes and a mononuclear NaI node, resulting in the formation of a complex covalent three-dimensional network. In addition, a tightly packed NiO/C&S nanocomposite is fabricated by sintering the coordination precursor at 400 °C. The uniform nanocomposite consists of NiO nanoparticles, incompletely carbonized carbon and incompletely vulcanized sulfur. When used as a supercapacitor electrode, the synthesized composite shows an extra-long cycling stability (>5000 cycles) during the charge/discharge process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section C, Structural chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.