Abstract

A powerful approach for analyzing the stability under arbitrary switching of continuous-time switched systems is based on analyzing stability for the “most unstable” switching law. This approach has been successfully applied to derive nice-reachability-type results for both linear and nonlinear continuous-time switched systems. We develop an analogous approach for discrete-time linear switched systems. We first prove a necessary condition for the “most unstable” switching law in the form of a discrete-time maximum principle (MP). This MP is in fact weaker than its continuous-time counterpart. To overcome this, we introduce the auxiliary system of a discrete-time linear switched system, and show that regularity properties of time-optimal controls (TOCs) for the auxiliary system imply nice-reachability results for the original discrete-time linear switched system. We derive several new Liealgebraic conditions guaranteeing nice-reachability results. These results, and their proofs, turn out to be quite different from their continuous-time counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.