Abstract

In this paper, using Ni3S2@MoS2 as an example, we report the successful design and synthesis of a novel hybrid core/shell metal sulfides with a conductive Ni3S2 core by a green, scalable and one-step solution strategy. When they are tested as supercapacitor electrodes, the Ni3S2@MoS2 heterostructure exhibits about 2 times the capacitance (848Fg−1) compared to the pristine Ni3S2 sample (425Fg−1), excellent rate capability (46.6% capacity retention at 20Ag−1) and outstanding cycling stability (91% retention after 2000 cycles). The enhancement is ascribed to the robust hierarchical core/shell structures which provide an increased reaction area and a close contact of electrolyte with the active material. In addition, a highly conductive 1D core material endows the quick transport of electrons along Ni3S2 nanorods to Ni foam. It is prospected that such novel hybrids can offer great potential promise in large-scale energy storage device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.