Abstract
CO2 hydrogenation via the reverse water gas shift (RWGS) reaction is a promising strategy for CO2 utilization while constructing Ni-based catalysts with high catalytic activity and perfect CO selectivity remains a great challenging. Here, we demonstrate that the product selectivity for CO2 hydrogenation can be significantly tuned from CH4 to CO by phosphating of SiO2-supported Ni catalysts due to the geometric effect. Interestingly, nickel phosphide catalysts with different crystalline phases (Ni12P5 and Ni2P) differ sharply in CO2 conversion, and Ni12P5 is remarkably more active. Furthermore, we developed a facile strategy to confine small Ni12P5 nanoparticles in mesoporous SiO2 channels (Ni12P5@SBA-15). Enhanced activity is exhibited on Ni12P5@SBA-15, ascribed to the highly effective confinement effect. The in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations unveil that catalytic CO2 hydrogenation follows a direct CO2 dissociation route with adsorbed CO as the key intermediate. Notably, strong multibonded CO (threefold and bridge-bonded CO) is feasibly formed on the Ni catalyst accounting for CH4 as the dominant product whereas only weak linearly bonded CO exists on nickel phosphide catalysts resulting in almost 100% CO selectivity. The present results indicate that Ni12P5@SBA-15 combining the geometric effect and the confinement effect can achieve near-unity CO selectivity and enhanced activity for CO2 hydrogenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.