Abstract

Methane reforming with CO2 is still of great interest due to growing demand creating a continuous need for new hydrogen sources. The main difficulty in this reaction is the deactivation of the catalyst due to the formation of carbon deposits on its surface. Herein, a series of commercial nickel catalysts supported on α-Al2O3 and modified with different amounts of rhenium (up to 4 wt%) was investigated. It was revealed that Re addition causes the formation of Ni–Re alloy during high temperature reduction, which was confirmed in deep XRD and STEM studies. The addition of Re positively influences not only the stability of the catalyst, but also increases its activity in the DRM reaction carried out in a Tapered Element Oscillating Microbalance (TEOM). The formation of Ni–Re alloy played a significant role in enhancing the properties of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.