Abstract
CuWO4 has emerged in the last years as a ternary metal oxide material for photoanodes application in photoelectrochemical cells, thanks to its relatively narrow band gap, high stability and selectivity toward the oxygen evolution reaction, though largely limited by its poor charge separation efficiency. Aiming at overcoming this limitation, we investigate here the effects that Cu(II) ion substitution has on the photoelectrocatalytic (PEC) performance of copper tungstate. Optically transparent CuWO4 thin-film photoanodes, prepared via spin coating and containing different amounts of Ni(II) ions, were fully characterized via UV–Vis spectroscopy, XRD and SEM analyses, and their PEC performance was tested via linear sweep voltammetry, incident photon to current efficiency and internal quantum efficiency analyses. From tests performed in the presence of a hole scavenger-containing electrolyte, the charge injection and separation efficiencies of the electrodes were also calculated. Pure-phase crystalline and/or heterojunction materials were obtained with higher PEC performance compared to pure CuWO4, mainly due to a significantly enhanced charge separation efficiency in the bulk of the material.Graphic abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.