Abstract

A novel low-cost and efficient counter electrode (CE) was obtained by treating catalytic inert tungsten trioxide (WO3) nanomaterial in NH3 atmosphere at elevated temperatures. The formation of tungsten oxynitride from WO3 after NH3 treatment, as evidenced by X-ray photoelectron spectroscopy and X-ray diffraction, increases the catalytic activity of the CE. Correspondingly, the power conversion efficiency (PCE) of the DSC is significantly increased from 0.9% for pristine WO3 CE to 5.9% for NH3-treated WO3 CE. The photovoltaic performance of DSC using NH3-treated WO3 CE is comparable to that of DSC using standard Pt CE (with a PCE of 6.0%). In addition, it is also shown that NH3 treatment is more efficient than H2 or N2 treatment in enhancing the catalytic performance of WO3 CE. This work highlights the potential of NH3-treated WO3 for the application in DSCs and provides a facile method to get highly efficient and low-cost CEs from catalytic inert metal oxides.

Highlights

  • Dye-sensitized solar cells (DSCs) have attracted great attention for their low cost, simple production, and acceptable energy conversion efficiency [1,2]

  • As an important component of DSCs, the counter electrode (CE) transfers the electrons from the external circuit to the internal electrolyte and reduces triiodide ions to iodide ions, which realizes the continuous operation of DSCs and greatly influences the photovoltaic performance of DSCs

  • We demonstrated that the electronic structure of the metal oxide (WO3) was able to be facilely changed by NH3 treatment and its catalytic activity was improved

Read more

Summary

Background

Dye-sensitized solar cells (DSCs) have attracted great attention for their low cost, simple production, and acceptable energy conversion efficiency [1,2]. It typically consists of three parts: a dye-sensitized oxide layer, electrolyte, and a counter electrode (CE). As an important component of DSCs, the CE transfers the electrons from the external circuit to the internal electrolyte and reduces triiodide ions to iodide ions, which realizes the continuous operation of DSCs and greatly influences the photovoltaic performance of DSCs. For achieving the high performance of DSCs, the CEs should possess high conductivity and catalytic activity [3]. We demonstrated that NH3 treatment was more efficient than H2 or N2 treatment in improving the performance of DSCs using WO3-based CEs

Methods
Results and discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.