Abstract
The finite-state vector quantization scheme called dynamic finite-state vector quantization (DFSVQ) is investigated with regard to its subcodebook construction. In the DFSVQ, each input block is encoded by a small codebook called the subcodebook which is created from a much larger codebook called supercodebook. Each subcodebook is constructed by selecting, using a reordering procedure, a set of appropriate code-vectors from the supercodebook. The performance of the DFSVQ depends on this reordering procedure; therefore, several reordering procedures are introduced and their performance are evaluated. The reordering procedures investigated, are based on the conditional histogram of the code-vectors, index prediction, vector prediction, nearest neighbor design, and the frequency usage of the code-vectors. The performance of the reordering procedures are evaluated by comparing their hit ratios (the number of blocks encoded by the subcodebook) and their computational complexity. Experimental results are presented and it is found that the reordering procedure based on the vector prediction performs the best when compared with the other reordering procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.