Abstract

In conversation, turn-taking is usually fluid, with next speakers taking their turn right after the end of the previous turn. Most, but not all, previous studies show that next speakers start to plan their turn early, if possible already during the incoming turn. The present study makes use of the list-completion paradigm (Barthel et al., 2016), analyzing speech onset latencies and eye-movements of participants in a task-oriented dialogue with a confederate. The measures are used to disentangle the contributions to the timing of turn-taking of early planning of content on the one hand and initiation of articulation as a reaction to the upcoming turn-end on the other hand. Participants named objects visible on their computer screen in response to utterances that did, or did not, contain lexical and prosodic cues to the end of the incoming turn. In the presence of an early lexical cue, participants showed earlier gaze shifts toward the target objects and responded faster than in its absence, whereas the presence of a late intonational cue only led to faster response times and did not affect the timing of participants' eye movements. The results show that with a combination of eye-movement and turn-transition time measures it is possible to tease apart the effects of early planning and response initiation on turn timing. They are consistent with models of turn-taking that assume that next speakers (a) start planning their response as soon as the incoming turn's message can be understood and (b) monitor the incoming turn for cues to turn-completion so as to initiate their response when turn-transition becomes relevant.

Highlights

  • Taking turns at talk in conversation is an essential feature of human interaction

  • The maximal random effects structure justified by design was used for all models (Barr, 2013; Barr et al, 2013)

  • Control variables were not included in the random effects structure

Read more

Summary

Introduction

When talking to one another in everyday encounters, interlocutors efficiently align their turns-of-talk, most of the time leaving only very short gaps of about 200 ms (Sacks et al, 1974; de Ruiter et al, 2006; Stivers et al, 2009; Heldner and Edlund, 2010; Levinson, 2016). How they achieve such rapid timing in turn-taking is still largely unresolved (Levinson, 2012). A group of models developed in the 1970s focuses on the transmission of signals about the state of the current

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.