Abstract

BackgroundThe Wadsworth Center, New York State Department of Health (NYSDOH), conducts routine diagnosis and surveillance of influenza viruses. Whole genome sequencing (WGS) with next generation sequencing (NGS) was initiated to provide more rapid, detailed, thorough, and accurate analysis. ObjectivesTo optimize and implement a method for routine WGS of influenza A viruses. To use WGS to monitor influenza A viruses for reassortment, mutations associated with antiviral resistance and antigenicity changes, as well as those potentially affecting virulence and tropism. Study designMultiple extraction and amplification methods were investigated and optimized for the production of template to be used for NGS. Additionally, software options were considered for data analysis. Initial WGS influenza projects have included the comparison of mixed population sequence data obtained with NGS, Sanger dideoxy sequencing, and pyrosequencing, the comparison of sequences obtained from paired primary/cultured samples, the analysis of sequence changes over several influenza seasons, and phylogenetic analysis. ResultsProcedures were optimized for extraction and amplification such that WGS could be successfully performed on both cultured isolates and primary specimens. Data is presented on 15 A/H1pdm09 and 44 A/H3N2 samples. Analysis of influenza A viruses identified and confirmed variant and mixed populations affecting antigenicity and antiviral susceptibility in both primary specimens and cultured isolates. ConclusionsAn influenza A whole genome PCR method has been optimized for the reliable production of template for NGS. The WGS method has been successfully implemented for enhanced comprehensive surveillance and the generation of detailed clinical data on drug resistance and virulence. Data obtained with this method will also aid in future vaccine selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.