Abstract

During late 1960s Green Revolution, researchers utilized semidwarf 1 (sd1) to improve the yield and lodging resistance in rice (Oryza sativa L.). However, sd1 has a negative effect to culm strength and biomass production. To increase yield dramatically in 21th century, development of next generation long-culm rice for non-lodging and high grain yield independent of sd1 has been needed. The present study developed Monster Rice 1, a long-culm and heavy-panicle type of rice line and compared it with Takanari, a high-yielding semidwarf rice variety about yield and lodging resistance associated traits. Brown rice yield and bending moment at breaking of the basal elongated internode were higher in Monster Rice 1 than those in Takanari due to a large number of spikelets per panicle and thicker culm. Furthermore, to identify QTLs with superior alleles for these traits, QTL and haplotype analyses were performed using F2 population and recombinant inbred lines derived from a cross between Monster Rice 1 and Takanari. The results from this study suggest that long-culm and heavy-panicle type of rice with a superior lodging resistance by culm strength can perform its high yield potential by using these identified QTLs contributing yield and lodging resistance.

Highlights

  • Through simulation model up to 2050, the world population may be expected to reach about 9 billion human population, and it is necessary to increase the crop yield to meet the growing food demand in same ratio [1]

  • The current study developed new rice lines derived from crosses among varieties with superior alleles associated with traits for high yield and lodging resistance

  • Monster Rice 1 has been developed from crosses among varieties with superior alleles associated with traits for high yield and lodging resistance (Fig 1) and belongs to a group of moderate maturation

Read more

Summary

Introduction

Through simulation model up to 2050, the world population may be expected to reach about 9 billion human population, and it is necessary to increase the crop yield to meet the growing food demand in same ratio [1]. Generation long-culm rice, Monster Rice 1 no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.