Abstract

Newtonian and special-relativistic predictions, based on the same model parameters and initial conditions for the trajectory of a low-speed scattering system are compared. When the scattering is chaotic, the two predictions for the trajectory can rapidly diverge completely, not only quantitatively but also qualitatively, due to an exponentially growing separation taking place in the scattering region. In contrast, when the scattering is nonchaotic, the breakdown of agreement between predictions takes a very long time, since the difference between the predictions grows only linearly. More importantly, in the case of low-speed chaotic scattering, the rapid loss of agreement between the Newtonian and special-relativistic trajectory predictions implies that special-relativistic mechanics must be used, instead of the standard practice of using Newtonian mechanics, to correctly describe the scattering dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.