Abstract
We exhibit an algorithm which computes an ϵ-approximation of the positive solutions of a family of boundary-value problems with Neumann boundary conditions. Such solutions arise as the stationary solutions of a family of semilinear parabolic equations with Neumann boundary conditions. The algorithm is based on a finite-dimensional Newton iteration associated with a suitable discretized version of the problem under consideration. To determine the behavior of such a discrete iteration we establish an explicit mesh-independence principle. We apply a homotopy-continuation algorithm to compute a starting point of the discrete Newton iteration, and the discrete Newton iteration until an ϵ-approximation of the stationary solution is obtained. The algorithm performs roughly O((1/ϵ)1/2) flops and function evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.