Abstract

AbstractSo far, all wavelets have been constructed from dilation equations with real coefficients. However, many wavelets cannot always be expressed in functional form. As the number of coefficients in the dilation equation increases, wavelets get increasingly longer and the Fourier transforms of wavelets become more tightly confined to an octave band of frequencies. It turns out that the spectrum of a wavelet with n coefficients becomes more boxlike as n increases. This fact led Newland (1993a,b) to introduce a new harmonic wavelet ψ(x) whose spectrum is exactly like a box, so that the magnitude of its Fourier transform \(\hat{\uppsi }(\upomega )\) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis. This chapter is devoted to Newland’s harmonic wavelets and their basic properties.KeywordsHarmonic WaveletMixed WaveletOctave BandSimple Mathematical StructureOrthonormal Basis FunctionsThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.