Abstract

A complete thermo-hydraulic understanding of condensing and evaporating flows in heat exchangers requires predictive modeling and analysis of not just heat transfer but also the hydraulics of the flow. While modeling the friction factor and pressure gradient yields a quantitative understanding of the pressure drop, only the two-phase multiplier and void fraction, in combination with the Martinelli parameter, help better understand the relative contributions of the liquid and vapor fractions to the overall pressure drop. This article reports the empirical modeling, analysis, and meta-analysis of the two-phase multiplier for condensing and evaporating flows in plate heat exchangers. Over three thousand data compiled from forty-two sources were modeled using various regression techniques to develop correlations for predicting the two-phase multiplier for condensing and evaporating flows in plate heat exchangers. The Weber number for most studies was less than one, indicating that drop condensation and pool boiling were impossible. Further, the Bond number for most studies was also much higher than one, indicating that the buoyancy effects were significant during condensation and evaporation. Meta-analysis for evaporators was statistically significant and positive, strongly recommending plate heat exchangers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.