Abstract
The nonideal adsorbed solution (NAS) theory has been formally extended to adsorption at the air/water interface from aqueous mixtures of ionic surfactants, explicitly accounting for the surface potential of the adsorbed monolayer with the Gouy–Chapman theory. This new ionic NAS (iNAS) theory is thermodynamically consistent and, when coupled to a micellization model, is valid for concentrations below and above the mixed cmc. Counterion binding is incorporated into the model using two fractional binding parameters, β σ for the adsorbed monolayer and β m for the micelles. The regular solution theory is used to model the nonideal interactions within the adsorbed monolayer and within the mixed micelles. New tension data for an equimolar mixture of sodium dodecyl sulfate (SDS) and sodium dodecyl sulfonate (SDSn) at two salinities fit this model well when mixing is ideal. The total surface densities, the surface compositions, and the surface potentials for the mixed monolayers are calculated. When there is no added salt, at total surfactant concentrations below the mixed cmc, the adsorbed monolayer is enriched in SDSn, but at total concentrations at and above the mixed cmc, the adsorbed monolayer is nearly an equimolar mixture. In the presence of 100 mM NaCl, the adsorbed monolayer is nearly an equimolar mixture, independent of the total surfactant concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.