Abstract
AbstractNew thermo‐crosslinking reactions of poly(glycidyl methacrylate), copolymers of glycidyl methacrylate with methyl methacrylate, styrene or ethyl acrlate with various active esters such as di[S‐(2‐benzothiazoly)] thioadipate (BTAD), di(S‐phenyl) thioadipate (PTAD), di(4‐nitrophenyl) adipate (NPAD), diphenyl adipate (PAD), and di(S‐phenyl) thioisophthalate (PTIP), and other polyfunctional esters were carried out in the film state using various catalysts such as quarternary ammonium or phosphonium salts, tert amines, or the crown ether 18‐crown‐6 = potassium salts system. Addition reactions of pendant epoxide groups in the polymer with the active esters such as NPAD and PTAD proceeded selectively to give gel compounds without other side reactions. The rates of reaction with the thioesters such as BTAD and PTAD were relatively faster than those with the phenyl esters such as PAD and NPAD at 70°C. The rates of reactions with the esters having flexible segments such as PTAD were also faster than those with the esters having rigid skeletons such as PTIP. Furthermore, it was found that the rate of reaction was affected strongly by reaction temperature, catalyst concentration, length of alkyl chain in the catalyst, kind of counterion of quarternary ammonium salts as a catalyst, content of pendant epoxide groups in the polymer, and kind of copolymer unit in the polymer, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.