Abstract

Early prediction of damages using vibration signal is essential in avoiding the failure in structures. Among different damage-detection approaches, the finite-element model updating and modal analysis-based methods are of most importance due to their applicability and feasibility. Owing to some restrictions in nodal measurements in experimental cases, finite-element model reduction is an indispensable part of fault-detection methods. Even though model reduction of dynamic systems leads to the less complicated models, an improved convergence rate and acceptable accuracy are highly required for a successful structural health monitoring of the real complex systems. In this paper, the aim is to design a damage-detection algorithm based on a new model updating method, which has a faster rate of convergence and higher accuracy. Then the proposed method is applied on a simulated damaged beam considering different noise levels to see how capable the method is in dealing with noise-corrupted data. Finally, the experimentally extracted data from a cracked beam in a real noisy condition are used to evaluate the efficiency of the proposed method in identifying the damages in a beam-like structure. It is concluded that the identification of the damages by the proposed method is encouraging and robust to the noise compared with the traditional method. Also, the proposed method converges faster and is more accurate in identifying damage than the traditional method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.