Abstract

In this paper we suggest new scaling algorithms for the assignment and minimum mean cycle problems. Our assignment algorithm is based on applying scaling to a hybrid version of the recentauction algorithm of Bertsekas and the successive shortest path algorithm. The algorithm proceeds by relaxing the optimality conditions, and the amount of relaxation is successively reduced to zero. On a network with 2n nodes,m arcs, and integer arc costs bounded byC, the algorithm runs in O(\(\sqrt n \) m log(nC)) time and uses very simple data structures. This time bound is comparable to the time taken by Gabow and Tarjan's scaling algorithm, and is better than all other time bounds under thesimilarity assumption, i.e.,C = O(n k) for somek. We next consider the minimum mean cycle problem. Themean cost of a cycle is defined as the cost of the cycle divided by the number of arcs it contains. Theminimum mean cycle problem is to identify a cycle whose mean cost is minimum. We show that by using ideas of the assignment algorithm in an approximate binary search procedure, the minimum mean cycle problem can also be solved in O(\(\sqrt n \) m lognC) time. Under the similarity assumption, this is the best available time bound to solve the minimum mean cycle problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.