Abstract

ABSTRACT The time-dependent nonequilibrium thermal and ionization history is traced of hot optically-thin radiatively-cooling gas in a 1D planar steady-state flow model of the Galactic fountain. The calculation of such a flow which neglects photoionization is found to be unable to simultaneously reproduce the observed C IV, Si IV, and N V column densities through Galactic halo gas. It is shown that, when photoionization is taken into account, a fountain flow can match the observations of both UV absorption and emission lines for a range of ionizing fluxes which depends on the characteristic size of the cooling regions within the flow. What levels of the external photoionizing flux, such as that contributed by Galactic starlight, supernova remnants, and the metagalactic radiation background, can produce agreement with observational results are determined. The ionizing radiation emitted by the cooling gas itself is found to be sufficient to cause the flow to match the observed column densities and line emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.