Abstract
We present an algorithm for the rapid computation of electron repulsion integrals (ERIs) over Gaussian basis functions based on the accompanying coordinate expansion (ACE) formula. The present algorithm uses equations termed angular momentum reduced expressions and introduces two types of recurrence relations to ACE formulas. Numerical efficiencies are assessed for (p pmid R:p p) and (sp spmid R:sp sp) ERIs by using the floating-point operation count. The algorithm is suitable for calculating ERIs for the same exponents but different angular momentum functions, such as L shells and derivatives of ERIs. The present algorithm is also capable of calculating ERIs with highly contracted Gaussian basis functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.