Abstract

Black-grass (Alopecurus myosuroides Huds) is a major grass weed in winter cereals in Europe. It reduces yields and can act as a secondary host for a range of diseases. Herbicide resistance in this species was first detected in the UK in the early 1980s, and has now been reported in thirty counties. To successfully manage herbicide resistance it is vital that suspect populations are tested so that appropriate action can be taken. Ideally, a test will be quick, cheap and easy to use. Furthermore, it should provide an unequivocal result before post-emergence herbicides are to be applied, allowing alternative strategies to be adopted where necessary. This paper reports the development of new tests for herbicide resistance based on our observation that the resistant black-grass biotype Peldon contains approximately double the activity of the enzyme glutathione S-transferase (GST) compared with susceptible biotypes. Data are presented on the production of a monoclonal antiserum to a novel 30 kDa GST polypeptide purified from the biotype Peldon. An ELISA using this antiserum is described and the utility of this assay to detect resistant black-grass biotypes in plants grown under glass and in the field is presented. In addition, a microtitre assay for GST activity is described, which allows the rapid assessment of GST activities of plants. Both abundance and activity of GSTs are discussed as markers for herbicide resistance in black-grass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.