Abstract

Query suggestion is generally an integrated part of web search engines. In this study, we first redefine and reduce the query suggestion problem as “comparison of queries”. We then propose a general modular framework for query suggestion algorithm development. We also develop new query suggestion algorithms which are used in our proposed framework, exploiting query, session and user features. As a case study, we use query logs of a real educational search engine that targets K-12 students in Turkey. We also exploit educational features (course, grade) in our query suggestion algorithms. We test our framework and algorithms over a set of queries by an experiment and demonstrate a 66–90% statistically significant increase in relevance of query suggestions compared to a baseline method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.