Abstract

The transcription factor tumor protein p53 (P53) controls a variety of genes most involved in cell cycle and is at the origin of apoptosis when DNA is irreparably damaged. We planned to select novel tumor protein p53-interacting peptides through the screening of hepta-peptide phage-display libraries. For this aim, human tumor suppressor protein p53 was expressed in Escherichia coli as Glutathione S-transferase fusion and purified by affinity chromatography. The phage library was then screened on this immobilized protein target. After three rounds of panning, phages were sequenced and shown to contain a consensus sequence NPNSAQG. Thereafter, either free p53 liberated from the fusion protein through thrombin treatment or Histidine-tagged p53 were recognized efficiently by the selected phage. To locate the p53-binding epitope of the selected hepta-peptide, three long peptides parts of the three known domains of the protein were synthesized and screened by the selected phage/peptide. Thus, the Carboxy-terminal p53 region was shown to be the target of the isolated phage as well as by its derived Fluorescein isothiocyanate-peptide. Molecular docking showed Lysine 386 as an important residue potentially engaged in this interaction. The selected hepta-peptide is a novel p53-interacting peptide, not described by other studies, and could be used as therapeutic tool in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.