Abstract

Polyenic systems are involved in light perception of numerous living organisms. Although a π-conjugated backbone is a common feature of all polyenes, their photophysics may vary. We provide a comparative quantum mechanical study of low-lying S1 and S2 excited states in short (3-5 double bonds) symmetric all-trans linear polyenes and corresponding protonated Schiff bases. In our investigation, we use the well-established ab initio multireference CASPT2 approach and benchmark the efficient semiempirical OM2-MRCI approach against it. For all protonated Schiff bases, MS-CASPT2 results in two distinct S1 minima with inverted and noninverted bond length pattern, respectively. We find that OM2-MRCI is a computationally affordable and reliable alternative to MS-CASPT2 for investigations of polyenic systems, particularly when highly demanding calculations (e.g. excited-state dynamics) need to be performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.