Abstract

Lack of frequent and global observations from space is currently a limiting factor in many Earth Observation (EO) missions. Two potential techniques that have been proposed nowadays are: (1) the use of satellite constellations, and (2) the use of Global Navigation Satellite Signals (GNSS) as signals of opportunity (no transmitter required). Reflectometry using GNSS opportunity signals (GNSS-R) was originally proposed in 1993 by Martin-Neira (ESA-ESTEC) for altimetry applications, but later its use for wind speed determination has been proposed, and more recently to perform the sea state correction required in sea surface salinity retrievals by means of L-band microwave radiometry (TB). At present, two EO space-borne missions are currently planned to be launched in the near future: (1) ESA's SMOS mission, using a Y-shaped synthetic aperture radiometer, launch date November 2nd, 2009, and (2) NASA-CONAE AQUARIUS/SAC-D mission, using a three beam push-broom radiometer. In the SMOS mission, the multi-angle observation capabilities allow to simultaneously retrieve not only the surface salinity, but also the surface temperature and an “effective” wind speed that minimizes the differences between observations and models. In AQUARIUS, an L-band scatterometer measuring the radar backscatter (σ0) will be used to perform the necessary sea state corrections. However, none of these approaches are fully satisfactory, since the effective wind speed captures some sea surface roughness effects, at the expense of introducing another variable to be retrieved, and on the other hand the plots (TB-σ0) present a large scattering. In 2003, the Passive Advance Unit for ocean monitoring (PAU) project was proposed to the European Science Foundation in the frame of the EUropean Young Investigator Awards (EURYI) to test the feasibility of GNSS-R over the sea surface to make sea state measurements and perform the correction of the L-band brightness temperature. This paper: (1) provides an overview of the Physics of the L-band radiometric and GNSS reflectometric observations over the ocean, (2) describes the instrumentation that has been (is being) developed in the frame of the EURYI-funded PAU project, (3) the ground-based measurements carried out so far, and their interpretation in view of placing a GNSS-reflectometer as secondary payload in future SMOS follow-on missions.

Highlights

  • IntroductionPrinciples of L-Band Microwave Radiometry and Global Navigation Satellite Signals (GNSS)-R over the Ocean

  • Principles of L-Band Microwave Radiometry and Global Navigation Satellite Signals (GNSS)-R over the OceanSea Surface Salinity (SSS) is a key climatologic and oceanographic parameter

  • This paper has presented the basic principles of GNSS reflectometry and how these observables can be eventually used to correct for the sea state induced changes in the brightness temperature at L-band

Read more

Summary

Introduction

Principles of L-Band Microwave Radiometry and GNSS-R over the Ocean. Sea Surface Salinity (SSS) is a key climatologic and oceanographic parameter. It has a significant influence on ocean currents (thermo-haline circulation), it is related to the evaporation minus precipitation, is responsible for El Niño Southern Oscillation (ENSO) events, and determines the life conditions of some species. L-band depends on other parameters, such as the Sea Surface Temperature (SST) and mainly, the sea state (surface roughness) [2]. The relationship between the brightness temperature changes and the sea state is very complex, since the sea emission is not dominated either by capillary waves, nor by the long waves, and even swell effects have an influence

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.