Abstract

Using thermoelectricity to directly convert (waste) heat energy into useful electricity faces a number of challenges. Not only are optimised thermal and electrical transport properties required resulting in a high figure of merit ZT and a high thermal–electric conversion efficiency η over a wide temperature range, thermoelectric (TE) materials must have sufficient mechanical integrity to survive continuous heating–cooling cycles. Thermal expansion of the material as well as the mechanical properties play an important role, i.e. their values should be as similar as possible for p- and n-type alloys to avoid stresses when used in a TE device. In this paper multiple filled p- and n-type skutterudites (Ba,Sr,DD,Yb)y(Fe1–xNix)4Sb12 with a ZT>1 and η≈13% are presented, for the first time showing, in contrast to hitherto investigated skutterudites, nearly identical thermal expansion coefficients and elastic moduli. The ZT values of these skutterudites could be further enhanced by more than 20% after severe plastic deformation via high-pressure torsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.