Abstract
Conflict-avoiding codes (CACs) have played an important role in multiple-access collision channel without feedback. The size of a CAC is the number of codewords which equals the number of potential users that can be supported in the system. A CAC with maximal code size is said to be optimal. The use of an optimal CAC enables the largest possible number of asynchronous users to transmit information efficiently and reliably. In this paper, the maximal sizes of both equidifference and non equidifference CACs of odd prime length and weight 3 are obtained. Meanwhile, the optimal constructions of both equidifference and non equidifference CACs are presented. The numbers of equidifference and non equidifference codewords in an optimal code are also obtained. Furthermore, a new modified recursive construction of CACs for any odd length is shown. Non equidifference codes can be constructed in this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.