Abstract

One of the challenging points in the simulation of a nanofluid flowing through a porous medium is modeling the surface heat flux in the presence of nanoparticles and internal solid matrix. The question is how much energy is absorbed by the solid phase, fluid phase, and particles at the surface of imposing heat flux? To reach a suitable answer, a local thermal nonequilibrium approach (including three energy equations) is presented in this paper and three heat flux models are proposed for the first time. The proposed models are compared and analyzed. The effects of interstitial heat transfer coefficients on the heat transfer in a porous channel are completely studied. The fluid temperature distributions and heat transfer rate obtained by homogenous and nonhomogenous approaches (for the proposed models) are completely studied and compared. The results show that the nonhomogeneous approach experiences larger Nusselt number than the homogeneous one for all the recommended heat flux models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.