Abstract
ObjectivesTo assess energy dissipation capacities and surface damping abilities of different CAD/CAM restorative materials (CRMs) to characterize stress resistance during load peaks. MethodsUsing instrumented indentation testing (IIT), Martens hardness (HM) together with its elastic (ηIT) and plastic index (ηITdis) and Leeb hardness (HLD) together with its deduced energy dissipation (HLDdis) were determined for eight ceramic, eight composite, and four polymer-based materials as well as three metals. The results were compared to those of bovine enamel. Ten indentations per material were performed at room temperature (23 ± 1 °C) on two separate specimens (12.0 × 12.0 × 3.5 mm3) after water storage (24 h; 37.0 ± 1.0 °C). Hardness parameters were recorded, and data were analyzed with one-way MANOVA (Games-Howell post hoc tests, α = 0.05). Correlations between different parameters were tested (Pearson, α = 0.05). ResultsIndependently determined HLDdis, and ηITdis values substantiated different energy dissipation characteristics of CRM, whereby a strong correlation was observed for the two datasets (r = 0.956, p = 0.011). Ceramics had the significantly lowest values (p < 0.001) while both parameters revealed the highest surface damping effects for metals (p < 0.001), followed in both cases by bovine enamel. Energy dissipation of polymer and composite CRM was in between ceramics and bovine enamel (p < 0.001), whereas only for HLDdis did both show no significant difference (p > 0.05). SignificancePromising new HLDdis and ηITdis data allow a reliable differentiation of energy dissipation and surface damping capacities of CRMs. Previously published rankings of edge chipping and loss tangent results were perfectly reproduced, especially by HLDdis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.