Abstract

New zero-dimensional or scalar electromagnetic finite elements, that have the time integral of electric scalar potential as their nodal variable are presented. There are three zero-dimensional element types, representing resistors, capacitors, and inductors. These elements can be easily combined with two- or three-dimensional elements, with three components of magnetic vector potential and the time integral of electric scalar potential as nodal variables. Constant current sources are directly modeled by inhomogeneous Neumann excitations, and constant voltage sources are modeled by use of Norton's theorem. By the addition of dependent current and voltage sources, electronic circuits can be modeled. Example finite-element analyses include an R-L circuit, a transistor circuit driving a wire loop modeled with three-dimensional finite elements, and a circuit impedance on the secondary of a saturable three-dimensional transformer model. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.