Abstract

A theoretical study of the Mo2TiAlC2 compound belonging to the MAX phases has been performed by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). We have calculated the structural, elastic, electronic and optical properties of Mo2TiAlC2. To confirm mechanical stability, the elastic constants Cij are calculated. Other elastic parameters such as bulk modulus, shear modulus, compressibility, Young modulus, anisotropic factor, Pugh ratio, Poisson’s ratio are also calculated. The energy band structure and density of states are calculated and analyzed. The results show that the electrical conductivity is metallic with a high density of states at the Fermi level in which Mo 4d states dominate. Furthermore, the optical properties such as dielectric function, refractive index, photoconductivity, absorption coefficients, loss function and reflectivity are also calculated. Its reflectance spectrum shows that it has the potential to be used as a promising shielding material to avoid solar heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.