Abstract
Structural investigations at room temperature revealed that TbNi2 does not crystallize in the Laves phase structure, but shows a superstructure of the Laves phase with the space group F-43m. Susceptibility, specific heat, magnetostriction and magnetoresistance measurements on polycrystalline specimens showed an additional magnetic phase transition at TR = 14 K below the Curie temperature of TC = 36±0.2 K. In order to clarify the nature of this magnetic phase transition at 14 K, elastic neutron diffraction below and above TR and TC was performed. The analysis of these data showed that this transition at TR is due to the rotation of the Tb moments on three of the total of eight non-equivalent Tb sites in the rhombohedrally distorted unit cell in the magnetic ordered state. This rotation of these Tb moments is out of the [111] direction into a plane perpendicular to the space diagonal. The cause for this magnetic instability is due to an interplay of the regularly arranged vacancies in the superstructure and the crystal field level position which has been studied by inelastic neutron scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.