Abstract

Ligands are essential for controlling the reactivity and selectivity of transition metal-catalyzed reactions. Access to large phosphine ligand libraries has become an essential tool for the application of metal-catalyzed reactions industrially, but these existing libraries are not well suited to new catalytic methods based on non-precious metals (i.e., Ni, Cu, Fe). The development of the requisite nitrogen- and oxygen-based ligand libraries lags far behind phosphines and the development of new libraries is anticipated to be time consuming. Here we show that this process can be dramatically accelerated by mining a typical pharmaceutical compound library that is rich in heterocycles for new ligands. Using this approach, we were able to screen a structurally diverse set of compounds with minimal synthetic effort and identify several new ligand classes for nickel-catalyzed cross-electrophile coupling. These new ligands gave improved yields for challenging cross-couplings of pharmaceutically relevant substrates compared to previously published ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.