Abstract

The clean and efficient utilization of coal is a promising way to achieve carbon neutrality. Coking coal is a scarce resource and an important raw material in the steel industry. However, the presence of pyrite sulfur affects its clean utilization. Nonetheless, this pyrite could be removed using depressants during flotation. Commonly used organic depressants (sodium lignosulfonate (SL), calcium lignosulfonate (CL), and pyrogallol (PY)) and inorganic depressants (calcium oxide (CaO) and calcium hypochlorite (Ca(ClO)2)) were chosen in this study. Their inhibition mechanism was discussed using FTIR, XPS, and molecular dynamics (MD) methods. The desulfurization ability of organic depressants was shown to be better than inorganic ones. Among the organic depressants, PY proved to be advantageous in terms of low dosage. Physical adsorption was identified as the main interaction form of SL, CL, and PY onto the surface of pyrite, as evidenced from FTIR and XPS analyses. Similarly, MD simulation results showed that hydrogen bonds played a proactive role in the interactions between PY and pyrite. The diffusion coefficient of water molecules on the pyrite surface was also observed to decrease when organic depressants were present, indicating an increase in the hydrophilicity of pyrite. This research is of great significance to utilize sulfur-containing coal and minerals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.