Abstract

Low moisture baked products were investigated with a view to characterising the effect of both formulation and humidity on their physical stability. At the end of the baking process, the samples were in the amorphous state as a result of starch gelatinization and sugar melting. Their thermal properties were analyzed with differential scanning calorimetry and their glass transitions were studied. The DSC thermograms were thoroughly studied through a Gaussian deconvolution of the first derivative of their heat flow. This approach evidenced a multiple phase behavior with different glass transitions in composite systems. They were associated with either a polymer-rich phase and/or a plasticizer (sugar)-rich phase whose behavior depended on the sample water content.This novel approach of thermal properties suggested new insights: considering the phase behavior of complex systems and thus the properties of their individual phases could contribute to a better understanding of the physical stability of the products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.