Abstract

The fact that the film is thin is in lubrication theory utilised to simplify the full Navier–Stokes system of equations. For incompressible and iso-viscous fluids, it turns out that the inertial terms are small enough to be neglected. However, for a compressible fluid, we show that the influence of inertia depends on the (constitutive) density-pressure relationship and may not always be neglected. We consider a class of iso-viscous fluids obeying a power-law type of compressibility, which in particular includes both incompressible fluids and ideal gases. We show by scaling and asymptotic analysis, that the degree of compressibility determines whether the terms governing inertia may or may not be neglected. For instance, for an ideal gas, the inertial terms remain regardless of the film height-to-length ratio. However, by means of a specific modified Reynolds number that we define we show that the magnitudes of the inertial terms rarely are large enough to be influential. In addition, we consider fluids obeying the well-known Dowson and Higginson density-pressure relationship and show that the inertial terms can be neglected, which allows for obtaining a Reynolds type of equation. Finally, some numerical examples are presented in order to illustrate our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.