Abstract

The upper layer of the epidermis, the stratum corneum (SC), is very important for skin barrier function. During the last trimester of gestation, the SC of the fetus is protected by a cheesy, white biofilm called vernix caseosa (VC). VC consists of water-containing corneocytes embedded in a lipid matrix and the basic structure shows certain similarities with the SC. This study aimed to characterize VC, with the main focus on an integral analysis of free and (to the corneocytes) bound lipids, on the lipid organization, and on ultrastructure. Free lipids of VC show a wide distribution in polarity; nonpolar lipids such as sterol esters and triglycerides predominate, having a chain length of up to 32 carbon atoms. The profile of fatty acids, omega-hydroxyacids and omega-hydroxyceramides - representing the bound lipids of VC - shows high similarity to that of SC. Morphological studies revealed the presence of highly hydrated corneocytes embedded in lipids, the latter being occasionally accumulated as lipid pools. Freeze fracture electron microscopy showed smooth surfaces of corneocytes and a heterogeneous appearance of intercellular lipids. The results suggest a lower degree of ordering of VC lipids as compared to the SC. A small-angle X-ray diffraction study showed similar results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.