Abstract

ABSTRACTIncreasing attention has recently been paid to the rheological behavior of microgel colloids and to the physical forces that control their behavior. Here, based on a series of cationic microgels that were synthesized by inverse microemulsion polymerization, the physical forces were explored by viscosity analysis of swollen microgels with different crosslinking densities and cationic contents. The results indicate that within a wide concentration range, the viscosity curves for these cationic microgels perfectly correspond to the Krieger–Dougherty model as modified by Tan et al. In particular, the specific volume in this model decreases at the critical overlapping concentration and reveals the interaction intensity between neighboring microgels. Furthermore, the viscosity index in the Herschel–Bulkley equation indicates that the interaction domain among microgels undergoes a transfer from an electroviscous effect to osmotic deswelling with increasing concentrations. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46297.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.