Abstract

Basic proteins and nucleic acids are assembled into complexes in a reaction that must be facilitated by nuclear chaperones in order to prevent protein aggregation and formation of non-specific nucleoprotein complexes. The nucleophosmin/nucleoplasmin (NPM) family of chaperones [NPM1 (nucleophosmin), NPM2 (nucleoplasmin) and NPM3] have diverse functions in the cell and are ubiquitously represented throughout the animal kingdom. The importance of this family in cellular processes such as chromatin remodeling, genome stability, ribosome biogenesis, DNA duplication and transcriptional regulation has led to the rapid growth of information available on their structure and function. The present review covers different aspects related to the structure, evolution and function of the NPM family. Emphasis is placed on the long-term evolutionary mechanisms leading to the functional diversification of the family members, their role as chaperones (particularly as it pertains to their ability to aid in the reprogramming of chromatin), and the importance of NPM2 as an essential component of the amphibian chromatin remodeling machinery during fertilization and early embryonic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.