Abstract

The paper presents new insights into the particle kinematics and tribological aspects and their effects on the non-dilative interface shear response from novel experimental investigations. A custom-designed apparatus that enables image analysis of particulate-continuum materials interactions from the bottom of the interface plane while shearing was developed. The effect of influential factors on the frictional mechanism, particle kinematics, and subsequently on the friction coefficient was investigated by performing experiments on three types of sands at different normal stresses with a transparent acrylic sheet and smooth geomembrane. The results demonstrated that the frictional response of the acrylic sheet and geomembrane was comparable, indicating that their particle kinematics at the interface could be similar. However, the critical normal and peak shear stresses differed due to the materials’ hardness. The image and micro-topographical analysis of the tested interfaces revealed that the box fixity, particle shape, and normal stress influence particle kinematics and shear-induced surface changes. The fixed box has shown restricted particle movements compared to the conventional box. Angular and smooth spherical particles exhibited lesser kinematics despite a huge difference in the shape and shear-induced surface changes. Rough spherical particles have larger displacements and shear-induced surface changes than smooth spherical particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.