Abstract
Single atomic Pt catalysts exhibit particularly high hydrogen evolution reaction (HER) activity compared to conventional nanomaterial-based catalysts. However, the enhanced mechanisms between Pt and their coordination environment are not understood in detail. Hence, a systematic study examining the different types of N in the support is essential to clearly demonstrate the relationship between Pt single atoms and N-doped support. Herein, three types of carbon nanotubes with varying types of N (pyridine-like N, pyrrole-like N, and quaternary N) are used as carbon support for Pt single atom atomic layer deposition. The detailed coordination environment of the Pt single atom catalyst is carefully studied by electron microscope and X-ray absorption spectra (XAS). Interestingly, with the increase of pyrrole-like N in the CNT support, the HER activity of the Pt catalyst also improves. First principle calculations results indicate that the interaction between the dyz and s orbitals of H and sp3 hybrid orbital of N should be the origin of the superior HER performance of these Pt single atom catalysts (SACs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.