Abstract

Fluorescence upconversion and transient absorption techniques are used to explain the source of the intense red/near-infrared emission of crystalline 4-dimethylamino-2'-hydroxychalcone. We found that the initially excited enol form undergoes tautomerization in 3 ps to form the keto tautomer. The latter is stable in the ground state as a consequence of J-type aggregation in the crystal packing and is manifested in an absorption peak at 550 nm that spectrally overlaps with the short-lived enol emission, leading to self-reabsorption and adding a factor to the complete depletion of the enol emission. Relaxation of the keto tautomer takes place in the form of intense fluorescence (600-750 nm) with 1.7 ns lifetime. The different spectroscopy in solution is due to vibrational cooling (300 fs), followed by solvation dynamics (5 ps in methanol) and twisting of the hydroxyphenyl ring (16 ps), before relaxation of the enol tautomer in the form of weak green fluorescence with 350 ps lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.